Videoanalyse: Die Assistenz des Bedieners

Videosysteme generieren große Mengen an Bilddaten, die der Mensch nicht wirtschaftlich sinnvoll auswerten kann. Meist gibt es zahlreiche Videokameras in einem Objekt, die alle von wenigen Bedienern beobachtet werden müssten. Dies ist nicht effektiv, da kein Mensch viele Kameras parallel aufmerksam verfolgen kann und eine solche Aufgabe schnell ermüdet. Eine Scheinsicherheit entsteht. Wichtig ist, aus der Masse der Informationen die für den Betrachter relevanten herauszufiltern. Analysealgorithmen sind in der Lage, beliebige Bildinhalte permanent und unermüdlich zu untersuchen und automatisiert die Aufmerksamkeit des Wachpersonals gezielt auf kritische Situationen zu lenken. Doch zentrale Fragen stellen sich: Was kann Videoanalyse wirklich leisten? Sollte sie möglichst nah an der Bildentstehung erfolgen oder zentral im Server? Was sind die Vor- und Nachteile?
Auch das Videoanalysesystem darf nicht zu oft ohne erkennbaren Grund ‚alarmieren‘, denn sonst werden Alarme nicht mehr als kritische Situationen wahrgenommen und das Bedienpersonal ‚drückt den Alarm einfach weg‘, ohne die Details aufmerksam zu prüfen. Der gleiche Effekt entsteht: Das System bietet lediglich eine Scheinsicherheit. Die klare Definition einer ‚kritischen Situation‘ und ein darauf abgestimmter Algorithmus sind Voraussetzung für den effizienten und zuverlässigen Einsatz von Videoanalyse. Leider machen viele Anbieter zu generelle Aussagen zu der Leistungsfähigkeit intelligenter Videoanalyse. So erwarten viele Anwender ‚menschliche Intelligenz‘: Wenn ich sehen kann, dass dort ein Mensch und kein Hund auf allen Vieren kriecht, dann muss ein Algorithmus das doch auch können?! Falsch! Und auch wieder nicht! Systeme können aber eine assistierende Rolle einnehmen. Die meisten Algorithmen arbeiten mit relativ einfachen Kriterien, um z.B. Personen und andere ‚bewegte Objekte‘ voneinander zu unterscheiden. Sie suchen zunächst nach Bewegungen im Bild. Findet sich eine Gruppe von Pixeln, die nahe beieinander liegen und sich gleichmäßig (d.h. in mehreren Bildern hintereinander) von einem Bereich im Bild zum anderen bewegen, stufen sie diese als zusammenhängendes Objekt ein. Jetzt werden z.B. die Seitenverhältnisse geprüft: Ist das Objekt höher als breit und ungefähr so groß wie ein Mensch, dann ist es eben einer. Sollen Menschen laut Alarmdefinition gemeldet werden, wird nun ein Alarm generiert. Vorher muss dem Algorithmus natürlich auch noch gesagt werden, wie groß ein Mensch in einer Szene ist, im Vorder- wie im Hintergrund. Dies geschieht in der Parametrierung, in der die Szene durch den Servicetechniker virtuell ‚vermessen‘ wird. Er legt fest, wie breit die Szene jeweils ist. Nur so kann der Algorithmus wissen, was er tatsächlich betrachtet. Das Beispiel beschreibt einen sehr einfachen Klassifizierungsalgorithmus, der völlig ausreichen kann. In einer Situation, in der ich erwarte, dass sich Menschen gebückt oder kriechend anschleichen, wird er allerdings zum Sicherheitsrisiko.

Zentrale oder dezentrale Analyse

Es gibt zahlreiche Algorithmen für unterschiedliche Aufgaben. Für alle gilt, dass sie für die individuelle Aufgabenstellung geeignet und parametriert sein müssen. Je nach Komplexität der Rechenvorgänge und der geforderten Reaktionszeit braucht ein Algorithmus mehr oder weniger Rechenleistung, oft ist er schon in der Kamera integriert. Die Videoanalyse erfolgt hier dezentral an der Peripherie des Videosystems statt zentral im Hauptserver. So wird unkomprimiertes Bildmaterial analysiert – perfektes Ausgangsmaterial – und Bandbreite und Rechenleistung im zentralen Rechner können eingespart werden. Bei der Verwendung von IP-Kameras, die zentral analysiert werden, muss das komprimierte Bildmaterial erst vollständig über das Netzwerk zum Server. Dort wird es dekomprimiert und analysiert. Kompressionsartefarkte können zu einer schlechteren Analyseperformance führen. Bildmaterial ohne relevante Information belastet Netzwerk und Server unnötig. Doch es gibt auch Vorteile wie z.B. mehr Flexibilität in Bezug auf die eingesetzten Algorithmen – bei speziellen Aufgabenstellungen oft unumgänglich. Die in den Kameras benötigte Rechenleistung sinkt, kostengünstigere Kameras sind möglich. Wichtig bei der Auswahl des zentralen Systems ist die Skalierbarkeit der Rechenleistung. Der Algorithmus sollte sowohl auf dem zentralen Videomanagementserver laufen können als auch auf dedizierten Analyserechnern, die per Netzwerk mit dem zentralen Managementserver kommunizieren.

Kombinierte Architekturen

Ideal ist häufig eine Kombination aus verschiedenen Architekturen: Eine ‚Voranalyse‘ in der Kamera untersucht, ob überhaupt Bewegung im Bild ist. Das bietet heute quasi jede IP-Kamera in fast jeder Preisklasse. Nur dann sendet sie ihre Bilder an den zentralen Auswerterechner, der gezielt die Bilder dieser einen Kamera mithilfe eines spezielleren oder komplexeren Algorithmus untersucht. Dieser filtert uninteressante Bewegungen heraus und meldet relevante Situationen. Da anzunehmen ist, dass nicht permanent in allen Kameras gleichzeitig Bewegung gemeldet wird, können sich mehrere Kameras die Rechenleistung eines zentralen Servers und die Bandbreite im Netz teilen. Auch die Kombination verschiedener Algorithmen auf demselben Kamerakanal kann in vielen Anwendungen sinnvoll und notwendig sein. Ein Beispiel dafür sind sogenannte ‚Dualsensoren‘, die zwei verschiedene Detektionsverfahren mit dem gleichen Analyseziel parallel laufen lassen und nur dann Alarm melden, wenn beide gleichzeitig eine kritische Situation detektieren. Die Detektionsverfahren basieren dabei auf unterschiedlichen Analyseprinzipien, die auf verschiedene Störfaktoren reagieren. Durch die Kombination beider zu einem Alarmmelder werden mehr Störfaktoren als Falschalarmquellen ausgeschaltet, als wenn ein Algorithmus alleine arbeitet. Andererseits kann der Einsatz unterschiedlich spezialisierter Algorithmen in derselben Szene notwendig sein, z.B. um kritische Bewegungsmuster ebenso wie stehen gebliebene Objekte im Bild zu erkennen. Da hier beide Anwendungen unterschiedliche Anforderungen stellen, macht es für ein optimales Ergebnis Sinn, zwei verschiedene spezialisierte Algorithmen zu nutzen.

Fazit und Tipps

Videoanalyse in modernen Videosicherheitssystemen ist eine sinnvolle Ergänzung der Funktionalität, besonders um das Bedienpersonal zu entlasten und ihm effizient zu assistieren. Dabei muss man Fragen wie ‚Welcher Algorithmus ist der Beste?‘, ‚In der Kamera oder im zentralen Server?‘ wie so oft in unserem Markt folgendermaßen beantworten: Es kommt darauf an. Lassen Sie sich intensiv beraten und testen Sie am besten anhand von Videosequenzen aus Ihrer realen Anwendung. Wählen Sie ein System, das flexibel verschiedene Architekturen und Algorithmen zulässt – sowohl zentral als auch in der Kamera, sowie verschiedene Algorithmen parallel auf demselben Kanal. Das System sollte skalierbar sein und jederzeit auch wechselnden Anforderungen und zukünftigen Entwicklungen angepaßt werden können. Denn vielleicht gibt es ihn ja eines Tages doch: den wirklich ‚intelligenten‘ Videoanalysealgorithmus.

Das könnte Sie auch interessieren

Thermografie für Instandhalter und Facility Manager

Mit der testo 870 bringt die Testo AG jetzt ein Werkzeug auf den Markt, das robuste Verarbeitung und einfache Bedienung mit moderner Technik vereint und sich zudem schon nach wenigen Einsätzen rechnet. Kern der Wärmebildkamera testo 870 ist ein hochwertiger Detektor mit 160×120 Pixeln. Das sind 19.200 einzelne Messwerte, denen keine Auffälligkeit entgeht. Und dank des großen Displays und des weiten Sichtfelds der Wärmebildkamera lassen sich Problemstellen auch in kleinen Räumen komfortabel erkennen. ‣ weiterlesen

Anzeige

Der DMS 2400 von Dallmeier ist eine hochperformante VideoIP-Appliance für bis zu 24 HD-Videokanäle. In Verbindung mit der dedizierten und bereits vorinstallierten Software Smavia Recording Server eignet er sich als eine kaskadierbare IP-Sicherheitsanwendung für z. ‣ weiterlesen

Axis Communications hat seine Axis-M11-Netzwerkkamera-Se-rie um die Axis-M11-L-Produkte erweitert. Diese Kameras sind laut Hersteller für einfache und diskrete Tag- und Nacht-Überwachung konzipiert, liefern HDTV-Qualität und arbeiten mit H. ‣ weiterlesen

Video-Kameras haben die Aufgabe, das von der Szene reflektierte Licht in elektrische Signale umzuwandeln, sodass am Ende der Übertragungsstrecke aussagekräftige Videobilder zur Verfügung stehen. Bei guten Lichtverhältnissen, insbesondere tagsüber bei Sonnenlicht, gibt es hinsichtlich der Beleuchtung üblicherweise keine Probleme. ‣ weiterlesen

Die VSE IP-Überwachungskamera mit Tag-/Nachtfunktion von IDS mit integriertem digitalen Videorekorder ist eine Komplettlösung für alle Überwachungsanforderungen auch bei schwierigen Lichtverhältnissen. Sie hat einen fünf Megapixel-Color-Sensor mit 2.560×1.920 Pixel Auflösung. Ein IR-Sperrfilter ermöglicht tagsüber eine gute Bildqualität, nachts wird das Sperrfilter durch ein Glasfilter ersetzt. ‣ weiterlesen

Im UEFA-zertifizierten Stadion im ukrainischen Donezk sorgt eine moderne Videoanlage für Sicherheit. 528 Mobotix-Kameras, unterstützt von 58 Bosch-PTZ-Kameras, haben rund um die Donbass Arena alles im Blickfeld. Die Videoanlage dient zum einen der Identifizierung aller Personen während des Eintritts, Aufenthalts und Verlassens des Stadions und zum anderen der Beobachtung und Steuerung der Besucherströme an wichtigen Punkten wie den Ein- und Ausgängen, den Zugängen zur Tribüne oder im Park. ‣ weiterlesen