Anzeige
Anzeige

An einem Strang – Teil 2

Die Kopplung von Solarthermie und Elektrowärmepumpen erhöht den Wirkungsgrad des gesamten Heizsystems. Im zweiten und letzten Teil dieses Beitrages (Teil 1 in GD 8+9) werden die vier Systemvarianten mit der Sole/Wasser-Wärmepumpe in einem Einfamilienhaus-Szenario betrachtet und realen Bedingungen ausgesetzt.
Untersuchungsobjekt war ein Einfamilienhaus mit einem Gesamtverbrauch von jährlich 12.000kWh. Davon entfallen etwa 9.500kWh auf den Heizenergiebedarf und rund 2.500kWh auf die Trinkwassererwärmung. Die Sole/Wasser-Wärmepumpe hat eine Leistung von 5,9kW. Von dem 750l fassenden Frischwasserspeicher werden 300l für den Trinkwasser-Bereitschaftsteil genutzt. Bei den Kombinationen mit rein solarer Trinkwassererwärmung sind zwei Sonnenkollektoren eingebaut, bei den Systemen mit Wärmequellenregeneration bzw. -anhebung drei. Der zusätzliche Kollektor soll der Wärmequelle mehr überschüssige Energie zur Verfügung stellen. Die Wetterdaten spiegeln die klimatischen Bedingungen der Region Bayern und Baden-Württemberg wider. Besonderes Augenmerk lag bei den Betrachtungen auf der energetischen Bilanzierung aller beteiligten Systemkomponenten sowie dem Systemverhalten mit seinen Schaltzyklen und Laufzeiten. Beispielhaft wurden zwei Tage im April (6. und 7. April) beobachtet.

Das Speicherverhalten

Aufschluss über die Vorgänge im Speicher geben die Diagramme zum Speicherverhalten auf S.92. Das Diagramm S/W_1 ist die Referenzanlage ohne Sonnenkollektor, S/W_2 die direkte Solareinbindung zur reinen Trinkwassererwärmung. Das Modell S/W_4 zeigt die aktive Regeneration – also die alleinige Anhebung der Wärmequellen-Temperatur – und S/W_3 die Mischform aus S/W_2 und S/W_4, also die Kombination aus solarer Trinkwassererwärmung und Quellenanhebung. Bei allen vier Varianten ist die Temperaturschichtung am Verlauf der blauen, grünen und roten Kurven deutlich erkennbar. Die blaue Kurve (T_SpuI) steht dabei für die untere Temperaturmessung auf 10% der Speicherhöhe, die grüne (T_SpmI) für die mittlere auf 60% und die rote (T_SpoI) für die obere Temperaturmessung auf 90% der Speicherhöhe. Die Schaltzyklen der Wärmepumpe für die Trinkwassererwärmung sind am Temperaturverlauf des mittleren Fühlers (grüne Kurve) erkennbar. Wird ein Speicher mit definiertem Bereitschaftsvolumen eingesetzt, muss die Wärmepumpe nicht zu jeder Zapfung in Betrieb gehen. Sie schaltet sich erst ein, wenn die Speichertemperatur am mittleren Speichertemperaturfühler 45°C unterschreitet. Daraufhin wird die Temperatur des Bereitschaftsteils des Speichers innerhalb der folgenden 20 bis 30min auf 57°C angehoben, bevor die Wärmepumpe abschaltet. Die vielen über den Tag verteilten Zapfungen gemäß den Vorgaben des Zapfprofils (DIN EN13203-2) führen nicht zu einem übermäßigen Takten. Die Wärmepumpe belädt mit vier bis fünf Schaltzyklen täglich den Trinkwasser-Bereitschaftsteil. Hier werden auch die Unterschiede der monovalenten Wärmepumpenanlage (S/W_1) zu den Solarkopplungen am deutlichsten. Bei den Varianten mit reiner oder kombinierter solarer Trinkwassererwärmung (S/W_2 und S/W_3) erkennt man vor allem am zweiten, dem sonnigeren Tag, dass die Wärmepumpe zur Warmwasserbereitung nicht benötigt wird. Das spart elektrische Energie. Bei der solaren Regeneration der Wärmequelle (S/W_4) sieht es anders aus. Obwohl die Solarkreispumpe (mp_Kol) sich an beiden Tagen im Dauerbetrieb befindet, belädt die Wärmepumpe den Speicher wie beim monoenergetischen System (S/W_1). Grund ist die komplette Übergabe der Solarenergie an das Erdreich, was auch an den niedrigen Absorbertemperaturen (T_abs) erkennbar ist. Ohne Wärmepumpe ist sie so nicht nutzbar. Die Wärmepumpe muss also, wie beim System ohne Solarunterstützung, die Trinkwassererwärmung alleine übernehmen und hat deshalb auch ähnliche Schaltzeiten. Besonders auffällig ist der hohe Solarertrag, der durch den reinen Erdreichbetrieb (S/W_4) möglich ist. Die elektrische Energieeinsparung des Kompressors – und damit auch die Wirkungsgradverbesserung der Wärmepumpe – ist allerdings vergleichsweise gering.

Abhängig von der Jahreszeit

Betrachtungen über einen Jahreszeitraum liefern aussagekräftige Antworten zu den saisonalen Effekten. Die Abbildung auf Seite 91 oben vergleicht die Energiewerte der vier einzelnen Systeme und führt zusätzliche Betriebskriterien ein. Daraus geht auch hervor, dass die konventionelle Einbindung der Solaranlage (S/W_2) das größte Einsparpotenzial bei der erforderlichen Kompressorenergie bietet. Gegenüber der Variante ohne Solarkoppelung (S/W_1) verbraucht sie mit 2.800kWh genau 641kWh weniger elektrischer Energie für die Wärmepumpe. Bei der reinen Solarregeneration der Wärmequelle (S/W_4) sind es nur 135kWh weniger. Von der kombinierten Variante (S/W_3) könnte man die größte Reduktion erwarten. Hier offenbart sich jedoch das Problem der Prioritäten. Wird beispielsweise morgens Energie auf niedrigem Temperaturniveau dem Erdreich übergeben, dann fehlt diese zur Warmwasser-Vorwärmung und muss mit elektrischer Energie durch die Wärmepumpe erzeugt werden. Durch ausgefeilte Regelalgorithmen könnte zwar die Prioritätenfolge gelöst und die Systemeffizienz optimiert werden. Erforderlich ist ein erhöhter regeltechnischer Aufwand, der aber sicherlich niemals alle Betriebszustände optimal bedient. Den Einsparungen bei der Kompressorenergie der Wärmepumpe muss man allerdings die elektrischen Mehrverbräuche für die Solarkreispumpen gegenrechnen. Während die konventionelle Solaranbindung mit einem typischen Wert von 94kWh auskommt, verbraucht die Pumpe im reinen Regenerationssystem (S/W_4) durch die deutlich längeren Laufzeiten fast das Doppelte. Die kompressorseitig eingesparte Energie (135kWh) wird in der Solarkreispumpe verbraucht. Ein weiterer Vorteil ergibt sich für das System mit der direkten Solarnutzung (S/W_2), wenn man die Laufzeit und die Zahl der Starts der Wärmepumpe vergleicht. Hier sind deutliche Reduktionen zu sehen, weil die Nachheizung im Falle der Sonneneinstrahlung verzögert oder vermieden wird. Gegenläufig verhält es sich im Falle der Erdreichregeneration (S/W_4): Bedingt durch die bessere Leistungszahl erreicht die Wärmepumpe im Heizungsfall schneller das Ausschaltkriterium. Das reduziert die Laufzeit, die Zahl der Starts nimmt aber deutlich zu.

Priorität auf direkter Solarnutzung

In Summe zeigt sich, dass Sonnenenergie bei der Koppelung mit Wärmepumpen am effizientesten direkt genutzt wird. Weil die Wärmeenergie dann nicht erst mit der Wärmepumpe erzeugt werden muss, resultiert aus der direkten solarthermischen Nutzung die größte elektrische Energieeinsparung. Sie liegt bei einer typischen Anlage zur Warmwasserbereitung bei etwa 16% des elektrischen Gesamtenergiebedarfs für Heizung und Warmwasser. Ein weiterer Vorteil ist die deutliche Reduzierung der Betriebsstunden und die Zahl der Taktungen. Zwar kann eine aktive Regeneration der Wärmequelle bei einem unterdimensionierten Bohrloch eine Unterkühlung vermeiden. Aus energetischer Sicht ist sie bei gut ausgelegten Quellen unter Berücksichtigung der erforderlichen Zusatzenergie und Zusatzkosten jedoch nicht zu empfehlen. Die solare Quellenanhebung lässt den thermodynamischen Kreisprozess in der Wärmepumpe lediglich um rund 10% effizienter ablaufen und ermöglicht daher nur eine geringe elektrische Energieeinsparung. Kurzum: Soll das Ganze mehr als die Summe seiner Teile sein, muss bei der Kombination von Wärmepumpe und Solarthermie der Fokus ganz klar auf der direkten Nutzung der Solarwärme liegen.

Empfehlungen der Redaktion

Das könnte Sie auch interessieren

1865 gegründet, musste die Gesangbuchfabrik J. Schäfer im pfälzischen Grünstadt 2006 ihre Tore schließen. Der seitdem andauernde Dornröschenschlaf des Gebäudes wird nur hin und wieder durch Ausstellungen des örtlichen Kulturvereins unterbrochen. Anders erging es dem östlich der alten Fabrik gelegenen Gelände: Auf der innerstädtischen Baulücke plante die Bauherrengemeinschaft Gesangbuchfabrik Grünstadt gemeinsam mit dem ABüro P4-Architekten BDA in Frankenthal eine Wohnanlage. Entstanden sind sechs Gebäude, die auf ein nachhaltiges Energiekonzept mit Produkten von Stiebel Eltron setzen. ‣ weiterlesen

Anzeige

Einen Sparkurs, den man gern fährt - das sind die mehr als eine Million Kilowattstunden an Energie, die der Hersteller von Verbindungstechnik- und Automatisierungslösungen Wago an seinem Produktions- und Logistikstandort im thüringischen Sondershausen nun einspart. Technischer Dreh- und Angelpunkt des Effizienzprojekts ist die kombinierte Bereitstellung von Druckluft, Wärme und Kälte.‣ weiterlesen

Anzeige

In der Automobilbranche sind die Weichen für die Zukunft gestellt: Diesel- und Benzinmotoren werden von elektrischen Pendants abgelöst. Auch das Heizen mit Strom ist auf dem Vormarsch: Neue Technologien haben der dezentralen elektrischen Raumbeheizung auf die Sprünge geholfen, machen sie sparsam und klimafreundlich. Das spiegelt sich auch im Sortiment der Raumwärmelösungen von AEG wieder.‣ weiterlesen

Anzeige

Wir leben in beängstigenden Zeiten: Die ganze Welt wird von Corona in die Knie gezwungen. Es ist schwer, den Betrieb in Schulen, Büros und anderen Räumen aufrecht zu erhalten. Ein wichtiger Faktor dabei ist die Überwachung der Luftqualität. Hier kann und muss ein High-End-Bussystem wie LCN helfen. Die dafür eigens entwickelten Produkte überwachen die Luftqualität und fordern in mehreren Schritten zum Lüften auf. Der Einbau des LCN-Luftgüte Sets ist einfach und erfordert keine Erfahrungen mit Bussystemen. Der Installateur, der LCN schon kennt, kann mit dem LCN-GSA4 viel mehr: Er kann nicht nur die Lüftung und Klimatisierung vollautomatisch betreiben sondern auch in der Visualisierung (LCN-GVS) Diagramme aufzeichnen, Push-Meldungen verschicken und Vieles mehr.‣ weiterlesen

Nicht nur in der aktuellen Zeit, sondern bereits seit längerem suchen Endverbraucher verstärkt nach Produkten und Lösungen, die dazu beitragen, Gefahren durch Bakterien und Allergene zu reduzieren. Ein Bereich, den dies u.a. betrifft, sind Klima- und Lüftungsanlagen die in Gebäuden eingesetzt werden.‣ weiterlesen

Mithilfe intelligenter Sensorik wird schlechte Luft und ein ungesundes Raumklima vermieden. Gerade in Räumen, in denen sich viele Menschen aufhalten, wird so die Ansteckungsgefahr durch Grippe- oder Covid19-Viren verringert. Gleichzeitig wird ein Raumklima für besseres und konzentrierteres Arbeiten und Lernen geschaffen. Aerosol-Multisensoren wie die von Steinel sorgen durch eine permanente Analyse für messbar gute Raumluft.‣ weiterlesen